Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Transl Med ; 15(687): eade0550, 2023 03 15.
Article in English | MEDLINE | ID: covidwho-2251212

ABSTRACT

The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
2.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: covidwho-2037304

ABSTRACT

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Subject(s)
Autoantibodies , Influenza, Human , Interferon Type I , Pneumonia , COVID-19/complications , COVID-19/immunology , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Pneumonia/complications , Pneumonia/immunology , Yellow Fever Vaccine/adverse effects
3.
Nat Commun ; 13(1): 5108, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2016699

ABSTRACT

The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Zika Virus Infection , Zika Virus , Amides , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Macaca fascicularis , Pandemics , Primates , Pyrazines , SARS-CoV-2 , Zika Virus Infection/drug therapy
4.
Curr Opin Pharmacol ; 62: 43-59, 2022 02.
Article in English | MEDLINE | ID: covidwho-2000360

ABSTRACT

To face the COVID-19 pandemic, prophylactic vaccines have been developed in record time, but vaccine coverage is still limited, accessibility is not equitable worldwide, and the vaccines are not fully effective against emerging variants. Therefore, therapeutic treatments are urgently needed to control the pandemic and treat vulnerable populations, but despite all efforts made, options remain scarce. However, the knowledge gained during 2020 constitutes an invaluable platform from which to build future therapies. In this review, we highlight the main drug repurposing strategies and achievements made over the first 18 months of the pandemic, but also discuss the antivirals, immunomodulators and drug combinations that could be used in the near future to cure COVID-19.


Subject(s)
COVID-19 , Vaccines , Drug Repositioning , Humans , Pandemics , SARS-CoV-2
5.
Biomed Pharmacother ; 150: 113058, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1814160

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nasal Mucosa , SARS-CoV-2
6.
PLoS Pathog ; 17(12): e1010106, 2021 12.
Article in English | MEDLINE | ID: covidwho-1598647

ABSTRACT

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.


Subject(s)
COVID-19/virology , Influenza, Human/virology , Orthomyxoviridae/physiology , SARS-CoV-2/physiology , Animals , Antiviral Agents , COVID-19/therapy , COVID-19/transmission , Drug Development , Evolution, Molecular , Humans , Influenza, Human/therapy , Influenza, Human/transmission , Orthomyxoviridae/immunology , SARS-CoV-2/immunology , Selection, Genetic , Viral Load , Viral Vaccines
7.
Front Immunol ; 12: 714027, 2021.
Article in English | MEDLINE | ID: covidwho-1581346

ABSTRACT

In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in order to adapt the recommendations for populations, as well as to reduce the risk of COVID-19 development in the most vulnerable people, especially patients with chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play a critical role in the modulation of both immune responses and COVID-19 severity. SARS-CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2 expression, notably in primary AECs with deficiency of the ion channel CF transmembrane conductance regulator (CFTR). Further, we show that the main component of P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an intracellular increased level of SARS-CoV-2 infection, however, with no effect on the amount of virus particles released. Considering the urgency of the COVID-19 health crisis, this result may be of clinical significance for CF patients, who are frequently infected with and colonized by P. aeruginosa during the course of CF and might develop COVID-19.


Subject(s)
Cystic Fibrosis , Flagellin/metabolism , Pseudomonas Infections/complications , Respiratory Mucosa/virology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Bacterial Proteins/metabolism , COVID-19/complications , Cells, Cultured , Humans , Pseudomonas aeruginosa , Respiratory Mucosa/metabolism
8.
Antiviral Res ; 197: 105227, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588315

ABSTRACT

The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.


Subject(s)
COVID-19/therapy , Influenza, Human/therapy , Respiratory Syncytial Virus Infections/therapy , COVID-19/prevention & control , Global Health , Humans , Influenza, Human/prevention & control , Respiratory Syncytial Virus Infections/prevention & control , World Health Organization
9.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1345702

ABSTRACT

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Adult , Aged , Animals , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Autoantibodies/blood , COVID-19/blood , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Interferon Type I/pharmacology , Longitudinal Studies , Male , Middle Aged , Nasal Cavity/immunology , Nasal Cavity/virology , Prospective Studies , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Viral Load/immunology , Virus Replication/drug effects , Virus Replication/immunology
10.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1222850

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Subject(s)
Antibodies, Neutralizing/chemistry , Giant Cells/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Binding Sites , CHO Cells , COVID-19/pathology , COVID-19/virology , Cricetinae , Cricetulus , Cryoelectron Microscopy , Giant Cells/cytology , Humans , Membrane Fusion , Peptide Library , Protein Binding , Protein Domains , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
11.
Molecules ; 26(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1217101

ABSTRACT

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Naproxen/pharmacology , Nucleoproteins/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Animals , Cell Line , Chlorocebus aethiops , Drug Repositioning , Humans , Molecular Docking Simulation , Nucleoproteins/metabolism , SARS-CoV-2/physiology , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
12.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Article in English | MEDLINE | ID: covidwho-1181165

ABSTRACT

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Subject(s)
COVID-19/virology , Macaca fascicularis/virology , SARS-CoV-2/physiology , Animals , Antiviral Agents/pharmacology , Basic Reproduction Number , COVID-19/blood , COVID-19/prevention & control , Cytokines/blood , Disease Models, Animal , Nasopharynx/virology , SARS-CoV-2/drug effects , Trachea/virology , Viral Load , Virus Replication/drug effects
13.
Microorganisms ; 8(12)2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-1024610

ABSTRACT

An increasing amount of evidence indicates a relatively high prevalence of superinfections associated with coronavirus disease 2019 (COVID-19), including invasive aspergillosis, but the underlying mechanisms remain to be characterized. In the present study, to better understand the biological impact of superinfection, we determine and compare the host transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) versus Aspergillus superinfection, using a model of reconstituted human airway epithelium. Our analyses reveal that both simple infection and superinfection induce strong deregulation of core components of innate immune and inflammatory responses, with a stronger response to superinfection in the bronchial epithelial model compared to its nasal counterpart. Our results also highlight unique transcriptional footprints of SARS-CoV-2 Aspergillus superinfection, such as an imbalanced type I/type III IFN, and an induction of several monocyte and neutrophil associated chemokines, that could be useful for the understanding of Aspergillus-associated COVID-19 and also the management of severe forms of aspergillosis in this specific context.

14.
bioRxiv ; 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-920837

ABSTRACT

In vitro antibody selection against pathogens from naïve combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection 1-4 . Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction 5 . Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naïve human Fab library. Lead antibody 5A6 blocks the receptor binding domain (RBD) of the viral spike from binding to the host receptor angiotensin converting enzyme 2 (ACE2), neutralizes SARS-CoV-2 infection of Vero E6 cells, and reduces viral replication in reconstituted human nasal and bronchial epithelium models. 5A6 has a high occupancy on the viral surface and exerts its neutralization activity via a bivalent binding mode to the tip of two neighbouring RBDs at the ACE2 interaction interface, one in the "up" and the other in the "down" position, explaining its superior neutralization capacity. Furthermore, 5A6 is insensitive to several spike mutations identified in clinical isolates, including the D614G mutant that has become dominant worldwide. Our results suggest that 5A6 could be an effective prophylactic and therapeutic treatment of COVID-19.

15.
Cell Rep Med ; 1(4): 100059, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-665121

ABSTRACT

In the current COVID-19 pandemic context, proposing and validating effective treatments represents a major challenge. However, the scarcity of biologically relevant pre-clinical models of SARS-CoV-2 infection imposes a significant barrier for scientific and medical progress, including the rapid transition of potentially effective treatments to the clinical setting. We use reconstituted human airway epithelia to isolate and then characterize the viral infection kinetics, tissue-level remodeling of the cellular ultrastructure, and transcriptional early immune signatures induced by SARS-CoV-2 in a physiologically relevant model. Our results emphasize distinctive transcriptional immune signatures between nasal and bronchial HAE, both in terms of kinetics and intensity, hence suggesting putative intrinsic differences in the early response to SARS-CoV-2 infection. Most important, we provide evidence in human-derived tissues on the antiviral efficacy of remdesivir monotherapy and explore the potential of the remdesivir-diltiazem combination as an option worthy of further investigation to respond to the still-unmet COVID-19 medical need.


Subject(s)
Antiviral Agents/pharmacology , Bronchi/virology , Nose/virology , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Airway Remodeling , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Bronchi/drug effects , Bronchi/immunology , Bronchi/ultrastructure , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Diltiazem/pharmacology , Drug Synergism , Humans , Immunity, Innate , Models, Biological , Nose/drug effects , Nose/immunology , Nose/ultrastructure , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/ultrastructure , SARS-CoV-2/growth & development , Vero Cells , COVID-19 Drug Treatment
16.
Nature ; 585(7826): 584-587, 2020 09.
Article in English | MEDLINE | ID: covidwho-664587

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic and no antiviral drug or vaccine is yet available for the treatment of this disease1-3. Several clinical studies are ongoing to evaluate the efficacy of repurposed drugs that have demonstrated antiviral efficacy in vitro. Among these candidates, hydroxychloroquine (HCQ) has been given to thousands of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes COVID-19-worldwide but there is no definitive evidence that HCQ is effective for treating COVID-194-7. Here we evaluated the antiviral activity of HCQ both in vitro and in SARS-CoV-2-infected macaques. HCQ showed antiviral activity in African green monkey kidney cells (Vero E6) but not in a model of reconstituted human airway epithelium. In macaques, we tested different treatment strategies in comparison to a placebo treatment, before and after peak viral load, alone or in combination with azithromycin (AZTH). Neither HCQ nor the combination of HCQ and AZTH showed a significant effect on viral load in any of the analysed tissues. When the drug was used as a pre-exposure prophylaxis treatment, HCQ did not confer protection against infection with SARS-CoV-2. Our findings do not support the use of HCQ, either alone or in combination with AZTH, as an antiviral drug for the treatment of COVID-19 in humans.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Cytokines/blood , Disease Models, Animal , Female , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/pharmacology , In Vitro Techniques , Kinetics , Macaca fascicularis , Male , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Pre-Exposure Prophylaxis , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2 , Time Factors , Treatment Failure , Vero Cells , Viral Load/drug effects , COVID-19 Drug Treatment
17.
Antiviral Res ; 181: 104878, 2020 09.
Article in English | MEDLINE | ID: covidwho-645295

ABSTRACT

In response to the current pandemic caused by the novel SARS-CoV-2, identifying and validating effective therapeutic strategies is more than ever necessary. We evaluated the in vitro antiviral activities of a shortlist of compounds, known for their cellular broad-spectrum activities, together with drugs that are currently under evaluation in clinical trials for COVID-19 patients. We report the antiviral effect of remdesivir, lopinavir, chloroquine, umifenovir, berberine and cyclosporine A in Vero E6 cells model of SARS-CoV-2 infection, with estimated 50% inhibitory concentrations of 0.99, 5.2, 1.38, 3.5, 10.6 and 3 µM, respectively. Virus-directed plus host-directed drug combinations were also investigated. We report a strong antagonism between remdesivir and berberine, in contrast with remdesivir/diltiazem, for which we describe high levels of synergy, with mean Loewe synergy scores of 12 and peak values above 50. Combination of host-directed drugs with direct acting antivirals underscore further validation in more physiological models, yet they open up interesting avenues for the treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Pandemics , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Berberine/pharmacology , COVID-19 , Chlorocebus aethiops , Chloroquine/pharmacology , Coronavirus Infections/virology , Cyclosporine/pharmacology , Drug Antagonism , Drug Combinations , Drug Synergism , Humans , Indoles/pharmacology , Lopinavir/pharmacology , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , COVID-19 Drug Treatment
18.
CPT Pharmacometrics Syst Pharmacol ; 9(9): 509-514, 2020 09.
Article in English | MEDLINE | ID: covidwho-603799

ABSTRACT

We modeled the viral dynamics of 13 untreated patients infected with severe acute respiratory syndrome-coronavirus 2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than two logs, drug efficacy needs to be > 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6-87% efficacy. They may help control virus if administered very early, but may not have a major effect in severely ill patients.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/physiology , Antiviral Agents/pharmacology , Humans , Lopinavir/pharmacology , Lopinavir/therapeutic use , Models, Theoretical , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , Severity of Illness Index , Singapore , Treatment Outcome , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL